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We continued our discussion of Special Relativity.  Einstein made two postulates: 

1)  If S is an inertial reference frame and if a second frame S’ moves with constant 
velocity relative to S, then S’ is also an inertial reference frame. 

2) The speed of light (in vacuum) has the same value c in every direction in all inertial 
reference frames. 

We reviewed the Lorentz transformation for the description of the same event from the 
perspective of two inertial reference frames S and S’ moving at speed 𝑉 relative to each other: 

 𝑥′ = 𝛾(𝑥 − 𝑉𝑉) 

 𝑦′ = 𝑦 

 𝑧′ = 𝑧 

 𝑉′ = 𝛾(𝑉 − 𝑥𝑉/𝑐2) 

It was noted that this transformation has the appearance of a rotation in a 4-dimensional space 
spanned by the coordinates 𝑥1, 𝑥2, 𝑥3 (the re-named ordinary Cartesian coordinates) and a new 
coordinate 𝑥4 = 𝑐𝑉.  The Lorentz transformation can be written in “rotational” form as 𝑥′(4) =

Λ� 𝑥(4), where 𝑥(4) = �

𝑥1
𝑥2
𝑥3
𝑥4

� is the space-time 4-vector [which can also be written as 𝑥(4) =

(�⃗�, 𝑐𝑉), for example] and the ‘rotation’ matrix representing the Lorentz transformation is 

Λ� = �

𝛾 0
0 1

0 −𝛽𝛾
0 0

0 0
−𝛽𝛾 0

1 0
0 𝛾

�.  This is not the most general Lorentz transformation.  It is a special 

case called a “boost”, which corresponds to a pair of reference frames moving relative to each 
other along one of the coordinate axes (𝑥1).  Note that we use the superscript 𝑥(4) to denote 4-
vectors and the vector sign (�⃗�) to denote ordinary 3-vectors. 

 One can define the rapidity as an angle obeying the equation tanh(𝜑) = 𝛽, where 𝛽 is 
the normalized relative velocity between the two reference frames, as always.  With this 
definition, the Lorentz transformation matrix can be written as    
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Λ� = �

cosh (𝜑) 0
0 1

0 −sinh (𝜑)
0 0

0 0
−sinh (𝜑) 0

1 0
0 cosh (𝜑)

�, which bears a strong resemblance to a rotation matrix in 

3-space, except for the use of hyperbolic functions (rather than trigonometric functions) and an 
extra minus sign.  One can think of the Lorentz transformation as a rotation of the 4-space 
coordinate axes that are used to describe a specific physical event.  One nice feature of the 
rapidity arises in velocity addition.  Velocities do not simply add, as we know from the last 
lecture, but must be combined in a rather peculiar way.  On the other hand, rapidities do add 
linearly; if we add two velocities v1 and v2 along the 𝑥1 axis to get the new velocity u, we must 
use the formula 𝑢 = v1+v2

1+v1v2/𝑐2
, whereas for rapidity one simply has 𝑢 = tanh (φ1 + φ2).  In 

other words, adding two relativistic velocities is like two consecutive rotations through angles φ1 
and φ2. 

 A four-vector is any quantity that transforms under a Lorentz transformation the same 
way that the space-time 4-vector transforms.  Other 4-vectors that we will encounter include 
velocity and momentum, to be defined later.  The first postulate of relativity implies that the laws 
of physics have the same form in all inertial reference frames.  In other words there is no inertial 
frame in which the laws of physics are particularly simple (e.g. having fewer terms) than any 
other frame.  This suggests that the laws of physics should be Lorentz invariant, meaning that 
they take exactly the same form after Lorentz transformation.  In other words, the laws of 
physics should be formulated in terms of 4-vectors!  Our objective now is to formulate 
relativistic mechanics in terms of 4-vectors, and to make sure that they reduce to classical 
Newtonian form in the limit 𝑉

𝑐
≪ 1. 

 The length of a three dimensional vector (𝑥2 + 𝑦2 + 𝑧2) does not change after the 
coordinate system describing the vector is rotated (i.e. 𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑥2 + 𝑦2 + 𝑧2 ).  This is 
an example of a scalar invariant of the vector (namely �⃗� ∙ �⃗�).  There is also a scalar product of 4-
vectors that always has the same value after an arbitrary Lorentz transformation.  The scalar 
length of a 4-vector is defined as 𝑠 ≡ 𝑥12 + 𝑥22 + 𝑥32 − 𝑥42.  This can also be written as 𝑠 = �⃗� ∙
�⃗� − (𝑐𝑉)2.  Note the minus sign in the last term.  This is dictated by the form of the Lorentz 
transformation given above.  We showed by direct calculation with the Lorentz transformation 
that 𝑠′ = 𝑥1′2 + 𝑥2′2 + 𝑥3′2 − 𝑥4′2 = 𝑠, proving that this is the correct definition of a Lorentz-
invariant scalar.  Note that 𝑠 is a scalar that can be positive, negative, or zero. 

We applied this scalar invariant to describe the spherical wave emanating from an 
exploding firework.  In frame S at rest relative to the shell just before it explodes, the leading 
edge of the expanding light sphere is given by the equation 𝑟2 = (𝑐𝑉)2, which is nicely described 
by the invariant 𝑠 = 𝑟2 − (𝑐𝑉)2 = 0.  Now consider a frame S’ moving by at a high rate of speed 
𝑉 relative to S.  The scalar invariant in this frame has exactly the same value: 𝑠′ = 𝑠 = 0.  In 
other words it says that 𝑟′2 − (𝑐𝑉′)2 = 0, which means that an observer in S’ also sees the light 
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expanding in a spherical (i.e. isotropic) manner at the same speed as the observer in S!  This 
counter-intuitive result is clearly in accordance with the second postulate of relativity.  

We next considered the light cone associated with a single event.  Take the event to be at 
the origin of the spatial coordinate system and at time t = 0.  If this event is the explosion of a 
firework, we know from the discussion above that the light expands spherically in (𝑥1, 𝑥2, 𝑥3) 
space at a uniform rate 𝑐.  This is described by the scalar invariant 𝑠 = 𝑥(4) ∙ 𝑥(4) = 0, or 
𝑟2 = (𝑐𝑉)2.  All other inertial observers will witness the same value for this scalar invariant, 
𝑠′ = 𝑥(4)′ ∙ 𝑥(4)′ = 0, meaning that 𝑟′2 = (𝑐𝑉′)2, so that they see the same expanding sphere of 
light.  The locus of points on the expanding sphere is called the light cone, and all inertial 
observers agree that light itself propagates on the light cone.  Now consider a second event that 
lies inside (and ahead in time 𝑥4 > 0) the light cone of the first event.  In this case the scalar 
invariant that describes the second event has a negative value 𝑠 < 0.  We showed that all inertial 
observers in other reference frames also agree on the sign of the scalar invariant and therefore 
agree on the time-ordering of the two events (namely that the second event occurred after the 
first event).  Hence the second event can be causally related to the first event.  Events in the 
upper part of the light cone (𝑥4 > 0) are therefore in the absolute future of the first event, while 
those in the mirror image light cone (𝑥4 < 0) are in the absolute past of the event in question.  
Finally we considered instead a second event which is outside the light cone of the first event.  In 
this case of space-like separation, observers in different reference frames do not necessarily 
agree on the time ordering of the two events.  Therefore the second event cannot be causally 
linked to the first event. 


